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Abstract. The mode-coupling theory of the liquid-glass transition is applied to the hard- 
sphere system. The critical exponents and amplitudes characterising the slow relaxation of 
density fluctuations in the vicinity of the transition are calculated. Particular attention is 
devoted to the description of the frozen correlations in the glass and to the critical amplitudes 
describing the p-relaxation process. The latter appears to be quite local, involving only 
rearrangements extending over a few interatomic distances. 

1. Introduction 

The recently developed mode-coupling theories of the glass transition [l, 21 have pro- 
vided a rather detailed picture of the dynamics of supercooled liquids near a certain 
crossover temperature T,, or crossover density n,. In the original version of this theory, 
to which we shall restrict ourselves in this paper, T, or n, mark a bifurcation singularity: 
for temperatures T greater than T, or densities n smaller than n, the dynamics exhibits 
the features of a strongly coupled liquid. For T < T, or n > n,, the density fluctuations 
exhibit the non-ergodicity characteristic of an ideal glass [3] .  The main difference 
between the idealised picture and reality is the neglect of activated hopping processes, 
which will finally restore ergodicity for sufficiently long times also for T < T,. In spite of 
this shortcoming one can hope that the predictions of the theory for mesoscopic times 
have some relevance for the experiment. For a summary of the present status of the 
theory with references to the original papers the reader can consult reference [4]. 

According to the above-mentioned theory, there is a certain region of the spectra or 
of the time axis, the so-called /3 regime, where the correlation functions exhibit some 
sort of universality, to be specified below. All spectra in this region, for example, 
are proportional to each other. The proportionality coefficient or critical amplitude 
specifies, for example, the spatial variations of the correlations. The common time 
dependance is determined by an exponential parameter A ,  which also gives the exponent 
for the power-law divergence of the transport coefficients [ 5 ] .  In this paper we want to 
discuss the above-mentioned quantities for the hard-sphere system which is considered 
as an example for a simple fluid. The critical amplitude for the density fluctuations will 
provide a description of the /3 motion in space. The values for the critical exponents 
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might be of interest for a future molecular dynamics analysis of the self-blocking of the 
motion in the dense system. 

2. Basic equations 

The mode-coupling theory focuses on the correlator formed with density fluctuations pq 
forwavevector q: @(q,  t )  = (p,* (t)p,)/S, .  Here S ,  denotes the structure factor. Function 
F ( q ,  t )  '= S,@(q, t )  is the coherent intermediate scattering law, its Fourier transform with 
respect to the time t being the dynamical structure factor S(q ,  U ) ,  the relevant quantity 
for neutron scattering experiments. In the ergodic liquid state the correlation functions 
approach zero in the long-time limit: F(q ,  t+ =) = 0. Within the ideal glass state there 
is spontaneous arrest of the fluctuations: the perturbed system does not return to the 
thermodynamic equilibrium state, fluctuations approach a non-trivial long time limit, 
specified by the glass form factorf, 

F(q ,  t-+ E) = S 4 f 4 = F 4 '  (1) 

f q / ( I  - f q >  = % ; , ( f k )  (2) 

The form factor has to be evaluated from the following non-linear equation [2]: 

(3) 

The vertex function V(q,  k)  can be expressed in terms of the two- and three-point direct 
correlation functions of the fluid c(k)  and c(q, k ) ,  respectively [6] 

V(4,  k )  = [kqc(k) + ( 4  - k )  * qc(4 - 4 + q2c@,  4 - 4l[S,S,-&/ql. (4) 
Notice that the temperature Tenters the equation for f 4  only indirectly via the various 
static distribution functions. For a hard-sphere system, T is irrelevant and so 
we will restrict ourselves to a discussion of the dependence of the results on den- 
sity n only. Equation (2) is solved most conveniently by the iteration procedure 
f;"/(l - f;") = % , ( f f ) ,  n = 0 , 1 , .  , . [2]. The convergence of this iteration is 
ruled by the spectrum of the stability matrix, defined by 

Cqk = a s q / a f k ( l  - f k ) 2 *  ( 5 )  

2 $,e, = 1 2 C,(I - f , ) e ;  = 1 (6) 

This is aFrobenius matrix (i.e. c,k 3 0). Its maximum eigenvalue &is non-degenerate. 
Imposing the conventions for the right and left eigenvectors ek, 2, 

4 4 

the latter are determined uniquely and obey e, > 0, &, > 0. For n > n, the iteration above 
defines a stable fixed pointf,, since 0 < Eo < 1. The transition point is characterised by 
Eo approaching unity from below according to the formula 

(1 - Eo)' = A ~ E  + O ( E ~ )  A0 >0 .  

Here 

( 7 )  

E = (n  - n,)/n, (8) 

is the separation parameter. A plot of (1 - Eo)2 versus n thus yields the precise value of 
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the critical density iz,. The form factor and eigenvector at the critical point, f ;  and e: 
enter the critical amplitude h, 

h ,  = (1 - f;)’e;. 

f ,  = f ;  + A l h , f i  + O(E) & +  +o* (10) 

(9) 
This amplitude determines the critical variation of the form factor near n,, up to some 
constant A I  > 0 

This formula is of experimental relevance, since f ,  is measurable in principle as the 
Debye-Waller factor of the system. F, is the area under the so-called a peak of the 
structural relaxation. For E > 0 this peak area is predicted to agree with F ;  up to 
corrections of order E .  Neutron scattering experiments have verified the critical E 

dependence to some extent [7-91. Therefore we expect equation (10) to be of interest 
also for future molecular dynamics work. 

From the eigenvectors and the form factor at the transition one can evaluate the 
exponent parameter by 

This number determines the master functions f? ( t^ )  of the B-relaxation region. Here the 
correlators read 

4 ) q W  = f ;  + h , f l f ? ( t W E )  & +  i o .  (12) 
From A. one obtains two critical exponents 0 < a  < 6, 0 < b S 1 by: r(l - a)’/ 
r ( l  - 2a) = A . =  r ( l  - b)2/r( l  + 2b). The first exponent determines the P-relaxation 
scale we = A21~11/2a. It enters also the critical correlations, which are expected for times 
exceeding the microscopic scale to but being smaller than l / w E  

4)q(t) - f ;  = h(q)( to/V to 6 t 6 m i l .  (13) 
Let us emphasise that all correlation functions are predicted to be given by a formula 
like equation (12) within the B region. They all agree in the part fi and differ in the 
respective values f 5 and h,. The /3 region extends from to to the time scale z of the E- 

relaxation process. One gets 

t = t o I & J - Y  y = 1/2a + 1/2b & + O - - - .  (14) 
All a resonances exhibit the same critical increase at n,; they merely differ in the factor 
to, which varies regularly with n .  In particular the diffusivity D ,  related to the low- 
frequency current spectrum [6] is predicted to decrease like 

D (n ,  - n)‘ n+ n,  - 0. (15) 
Proofs of the preceding statements can be found in reference [5]. 

3. Results 

The vertex (4) has been determined with the Verlet-Weis approximation [6] for the 
structure factor and the convolution approximation for c(k ,  q )  (i.e. c(k ,  q )  = 0 ) .  The 
physical control parameter n shall be converted as usual into the packing fraction q = 
xna3/6 with a denoting the sphere diameter. The critical value was then found to be 
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Figure 1. Reduced diffusivity D' = D(m/02kBT)'12 of a hard-sphere system as a function of 
packing fraction 7.  Open circles are molecular dynamics data [13]. The full curve is the 
power law D* = 0.716(0.60 - v ) ~ " .  

r ]  yw = 0.525, confirming the calculations of Bengtzelius [ 101. This value is somewhat 
larger than the one from the Percus-Yevick approximation r]:' = 0.517 [2]. We have 
also improved the latter work by eliminating the convolution approximation in favour 
of a recently proposed approximation [ll] for the triplet correlations. This modification 
shifted r]:' to 0.510. The intensitiveness of qC can be traced back to the small value of 
c(q, k )  for triplets of wavevectors of length qo. The latter value denotes the position of 
the structure factor peak. The mentioned triplets are the most relevant configurations 
for the determination of the critical point. So r]?" = 0.52 k 0.01 is the expected value 
on the basis of equation (3). Improving the theory, couplings to pair modes enter which 
consist of current and of density fluctuations. They yield a leading contribution to 
hopping and eliminate the transition. Approximating the density fluctuations by their 
static part, however, the transition remains present, but is shifted to larger r]  [12]. In this 
sense the result qFC should be considered as a lower bound for the actual critical value. 
Indeed, the value for qC, obtained by molecular dynamics [13] is about 10% larger than 
our estimate. The size and direction of the discrepancy between the mode-coupling 
calculation and computer simulation is of the same kind as reported by Bengtzelius [ 101 
for Lennard-Jones models. 

For the exponent parameter A = 0.758 is found, somewhat larger than the value 
0.741 obtained for a Lennard-Jones system [14]. From A one predicts the relevant 
exponents for the hard-sphere model 

a = 0.301 b = 0.545 y = 2.58. (16) 
In figure 1 the simulation results for the diffusivity [13] are compared with the mode- 
coupling prediction D = Do(qc - r ] ) 2 . 5 s ,  where the two unknown constants Do and qC are 
used as fitted parameters. The full curve shows the result for 

q C  = 0.60 (17) 
which then appears as the prediction for the true critical packing fraction for the hard- 
sphere system. There is reasonable agreement between the data and the theoretical 
picture. But this agreement should not be considered as a test of the evaluated exponent 
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XQ 2 :  

qo 
Figure 2. Structure factor S, (broken curve), glass form factor F, = S,f, (full curve), and 
critical amplitude Hq = S,h, (chain curve) of the hard-sphere system at the critical packing 
fraction 17‘ = 0.5252 as function of wavevector q. a = ( 3 / 4 ~ n , ) ’ ’ ~  is the averagedinterparticle 
distance. 

y .  Since the available data for D extend only over about one decade, an unbiased fit to 
a power law (15) cannot determine y to better than about 25%. 

Figure 2 displays the structure factor S,, the form factor F, = S, f ,  and the critical 
amplitude H ,  = S,h, at the transition point. The relevance of these quantities for a 
realistic system is obvious from the preceding discussion of equation (10). One can hope 
that these curves reflect reality in as far as a hard-sphere system can be considered as a 
qualitative model for a real system. The behaviour of S,, the total scattering cross 
section, is well understood [6]. The intensity F, of the quasi-elastic line oscillates in 
phase with S,, but it decreases for large wavevectors. The amplitude H,, the derivative 
of the Debye-Waller factor with respect to the square root of the separation parameter, 
oscillates in phase with S, as well. The magnitude HqO at the position of the structure 
factor peak is as large, as the magnitude at the position of the second peak q1 = 1.8 qo. 
This peculiarity isimportant if one wants to measure the b-relaxation dynamics, equation 
(12), in particular the critical decay, equation (13); be it by neutron scattering or by 
molecular dynamics done for F(q ,  t )  = S,@,(t). As far as scattering intensity is con- 
cerned, measurement at qo or q1 are equivalent. However, because of the DeGennes 
narrowing effect [6] the averaged spectrum is squeezed to lower frequencies at qo than 
at ql .  Therefore the separation of the /3 spectrum from the microscopic excitation band 
is better at q1 than at qo. The validity of the asymptotic formula (13) sets in at an earlier 
time for q1 than for qo. The a-peak intensity is considerably larger at qo than at ql .  
Therefore the disturbance of the /? spectrum by the aprocess is stronger at qo than at ql. 
So there are two arguments in favour of testing p relaxation at q1 and not at qo. 

In figure 3 the Fourier back-transform of the mentioned three quantities are shown. 
The pair correlation g ( r )  is zero within the hard-curve diameter 0 and then exhibits 
the usual shell structure of a densely packed system [6]. F(r)  is the averaged spatial 
distribution of the particle pairs, which are frozen on a timescale shorter than t. Beyond 
the second nearest neighbour F(r)  = g ( r )  and the deviations at the second nearest 
neighbour distance are very small. In any case the oscillations of F(r)  follow those of 
g ( r ) .  This result is in qualitative agreement with molecular dynamics data, obtained for 
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r / a  

Figure 3. Pair correlation function g ( r )  (broken curve), and Fourier back-transforms of the 
form factor F(r)  (full curve) and critical amplitude H ( r )  (chain curve); density and U as in 
figure 2. 

a binary soft-sphere system within the glass phase [15]. The main differences between 
F(r)  and g(r )  occur for r smaller than twice the averaged interparticle distance a = 
(3/4nt1)'1~. For Y - 1.7a, F(r)  is considerably smaller than g ( r )  and this is compensated 
for by F(r)  being non-zero for r < cr. The critical amplitude H(r )  exhibits sign changes. 
It is rather large but negative for r G o and it is large and positive at the next neighbour 
position. The oscillations are repeated with a much smaller amplitude at the next nearest 
neighbour shell. For r > 4a, the amplitude H ( r )  for the /3 dynamics is practically zero. 
Obviously, a molecular dynamics test of the process in ordinary space is done best by 
studying density fluctuations on a distance Y - 1.40. 

4. Conclusions 

The results for the spatial variation of the form factor F(r)  and critical amplitude H(r)  
are non-trivial, and allow a physical interpretation of some aspects of the dynamics 
described by the mode-coupling theory. The correlator F(r ,  t )  = ( p ( r ,  t)p(O, 0)) de- 
scribes the evolution of a density perturbation 6 p ( r ,  t ) ,  created at timet = 0 and position 
r = 0 by an adiabatically switched on potential [6]. At t = 0 one has F(r ,  t = 0) = 
g(r )  + 6(r), .  i.e. the fluctuation established by the requirements of equilibrium thermo- 
dynamics. On the microscopic time scale to,  6 p ( r ,  t )  will be rather complicated, involving, 
for example, emission of sound waves and building up of a backflow pattern. We are not 
concerned here with this complex behaviour, but rather with the motion which occurs 
on a longer time scale in supercooled liquids or glasses and is described by equation (12) 

( M y ,  9) = F(r) + H(r)V/Elf, ( W E 4  to e t e z. (18) 

The time-dependent part in this equation is known from previous work [4]: f ? ( i )  
decreases monotonically. From figure 3 it is seen that 6p(r ,  t )  decreases strongly at the 
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r / a  

Figure4. Comparison of the mode-coupling prediction (full curve) with the ‘random packing’ 
description (broken curve, equation (19)) for the glass form factor F(r) .  

nearest-neighbour shell, this decrease being accompanied by an increase for r < O. The 
whole motion follows the power law (13) at the beginning of the /3 process. This motion 
has a weak analogue for the second-neighbours shell, but there is no motion whatsoever 
for r > 4a. This means that the whole /3 dynamics involves only a particle and its nearest 
(and to a lesser extent next nearest) neighbours. Outside this volume the medium is at 
rest: the initial disturbances have already vanished, leaving g(r)  unchanged, while the 
a-relaxation process, which will yield a full relaxation in the liquid, has not yet started. 
Within the sphere r < 4a all fluctuations move in phase or out of phase depending on 
the sign of H ( r ) ,  but there is no flow from one point of space to another. In this 
sense the /3 relaxation is a localised excitation of the system. We believe that this 
characterisation of the /3 relaxation as a strictly local phenomenon is consistent with the 
original ideas of Goldstein [16] and Johari [17]. 

A final remark concerns the interpretation of the quantity F(r): this quantity charac- 
terises the frozen correlations in the glassy phase; let us suppose that the ideal glass can 
be described as a frozen, irregular lattice, as is usually assumed in structural models for 
glasses such as random packings [18]. Each particle has then a well defined equilibrium 
position Ri = ( rJ .  The probability distribution of the particle position around its lattice 
site is given by (6(ri - r ) )  = p,(r - Ri), where p, is typically a Gaussian (whose width 
gives the Lindemann ratio). Assuming the displacements from equilibrium positions to 
be uncorrelated for t  = 0 and t = one gets from the definition of F(r, t ) :  

F(lr - S I ,  t = E) = F,(lr - SI) + dR dR’ ~ ( r  - R)gL(R - R’)~,(s  - R ’ )  (19) J 

s 
with 

Fs(lr - SI) = p-’ dR Q)(T - R ) ~ ( s  - R) 

and where g,(R - R’) is the site-site pair correlation function of the lattice. Choosing 
for p, a Gaussian with a width (r2)l/* = 0.110 (which is reasonable for the transition point 
[ 2 ] )  and taking g, from the random packing simulation of [U],  the broken curve 
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presented in figure 4 is obtained. The results for this simulation and for the mode- 
coupling prediction are very similar; the mode-coupling prediction appears thus to be 
consistent with other descriptions of the glass. 
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